
Coding Guidelines in ADITO - Long Version
AID001

ADITO Academy

Version 1.1 | 2024-11-27

This document is subject to copyright protection. Therefore all contents may only be used, saved or

duplicated for designated purposes such as for ADITO workshops or ADITO projects. It is mandatory to

consult ADITO first before changing, publishing or passing on contents to a third party, as well as any

other possible purposes.

Version Changes

1.1 ● New chapter Module-specific terms

1.0 Initial release.

Character Formatting

The following signs will point you to specific sections:

 Hints and notes.

 Tips and tricks.

 This is important!

 Warning! These actions are dangerous and can result in data loss!

The following font formatting applies:

Font type Meaning

Mask The mask, table or button to which the section refers

"Mask" Terms that originate from the system and that need to be emphasized in

the reading flow

code(); Code and program parts

Index

Character Formatting ___ 2

1. Purpose __ 4

2. General rules__ 4

3. Coding (technical)__ 5

3.1. General___ 5

3.2. Liquibase ___ 5

3.2.1. Structure __ 5

3.2.2. Location___ 6

3.2.3. Spelling ___ 6

3.2.4. Error Handling / Prevention ___ 6

3.3. SQL __ 6

4. Coding style (format) ___ 7

5. Spelling & Wording___ 8

5.1. Project specific ___ 8

5.2. JDito identifiers __ 8

5.3. ADITO models__ 9

5.4. Module-specific terms __ 13

5.5. Liquibase __ 14

6. Documentation and Comments__ 15

6.1. Comments ___ 15

6.2. Documentation of Functions/Methods ___ 16

6.3. Documentation Property __ 18

7. Reserved (Key-)Words ___ 18

© 2024 ADITO Software GmbH 3 / 18

1. Purpose

The benefits of the ADITO Coding Guidelines are:

● Code is easily readable and understandable.

● Conventions help to keep formal requirements, which is especially helpful with weakly typed

languages, such as JavaScript (and JDito, which is based on it).

● Conventions support standardised processes, which raises the product quality.

● Spelling conventions for ADITO models and elements enable a quick orientation in all parts of

the ADITO project code, for programmers as well as for managers and customers.

 These coding guidelines are also the basis of internal ADITO code reviews.

2. General rules

● All parts of ADITO code must be written in English language to achieve ever consistent code

● Generally, the naming of all code elements should be self-explanatory for easier reading

○ Examples:

■ A variable that holds the DOCUMENTTEMPLATELINKID should be named

documentLinkId, not docLId.

■ A function that deletes all CONTACT data sets should be named deleteAllContacts,

not delCon

● LOGGING-imports, aswell as LOGS themselves, have to usually be deleted (see Code Review).

The rule does not apply to error-logs.

● If nothing is defined in this document, the usual JavaScript guidelines are to be followed

○ In programming history, general coding conventions have been evolved. In most cases,

these can also be applied to ADITO projects. E.g., a function that returns the CONTACTID

should be named getContactId, not retrieveContactId.

○ mozilla js guidelines

○ w3schools js conventions

● Always use semicolons at the end of a line if you can

● Do not add personal info in codes - the author can be determined through the git history

● Do not refer to tickets, CRs or sprint numbers (does not apply to file names in Liquibase)

● Always try to leave the code with a higher quality than you found it - you can always clean code

© 2024 ADITO Software GmbH 4 / 18

https://neon.adito.de/client/KnowledgeManagement/full?id=59cf12b0-d7a0-4e4b-92a3-dfcdf0c721e0
https://developer.mozilla.org/en-US/docs/MDN/Guidelines/Code_guidelines/JavaScript
https://www.w3schools.com/js/js_conventions.asp

up when you stumble over it. BUT nobody has to reformat some "old" code - if the changed are

quite recent ask the author to reformat.

● Do not change code in default libraries in your project - this can cause problems with updates

○ If you need changes for your specific purpose, copy the library & functions you need to

change and add your project specific prefix (see project specific)

○ If you found a bug in a default library create a ticket for the responsible xRM Team

3. Coding (technical)

3.1. General

● Be lazy: Never write something twice, rather create a custom function - this makes it easier to

maintain your code later on

● In your custom library always start out by creating a class

● Wherever possible, use the methods .forEach(), .map() or for(in) instead of equivalents that are

harder to read

● A good reference of dos & don’ts in JavaScript is w3schools js best practices

● Don’t use prototype functions when nothing object specific is needed

● Do not use hardcoded values use constants

Do NOT use "for each … in" loops, they are deprecated. Use the function as

mentioned above.

Never use the JavaScript function eval! It is a serious security risk and bad for

performance.

3.2. Liquibase

Liquibase is an open source tool for database schema change management. It has not been developed

by ADITO, but it is integrated into the ADITO Designer via a plugin (see option "Plugins" in the "Tools"

menu). You can find a detailed documentation of Liquibase on the developer’s web site.

Nevertheless, ADITO has developed conventions for structure and spelling of the XML files used by

Liquibase.

3.2.1. Structure

See project specific (5.1).

© 2024 ADITO Software GmbH 5 / 18

https://www.w3schools.com/js/js_best_practices.asp
https://www.liquibase.org/

3.2.2. Location

In the "Projects" window of the ADITO Designer, the Liquibase xml files reside in the folder alias >

Data_alias.

If your project is based on the xRM project, this folder already contains sub-folders with xml files

related to xRM. Therefore, create a new folder on top level, using a name related to your project’s

name. See also project specific (5.1).

3.2.3. Spelling

See overview for all spellings (5.0).

3.2.4. Error Handling / Prevention

To prevent errors and make sure that liquibase is properly running, there are some rules to follow:

● Never edit commited liquibase files - create a new one

● Use preconditions for structural change to prevent errors

● Write deletes before data inserts to prevent duplicates or errors (for example for Keywords,

Attributes, etc.)

3.3. SQL

In ADITO, class SqlBuilder (in processes > libraries > Sql_lib) provides functionality for building prepared

statements. Find more information in property "documentation" of Sql_lib and in the ADITO

Customizing Manual.

● Qualified column name

Every column name used in an SQL-statement should be preceded by the table name

(Tablename.Columnname, e.g. ORGANISATION.ORGANISATIONID), as there are identical column

names within different tables.

 Do NOT use any reserved keywords in your statements!

● Prepared Statements

In general, prepared statements should be used in the code due to security reasons (especially,

in order to prevent misusage by "SQL injection"). Its usage is supported via the code completion

inside the designer.

Example:

 newSelect("CONTACT.CONTACTID, CONTACT.PERSON_ID, CONTACT.ORGANISATION_ID")
 .from("CONTACT")

© 2024 ADITO Software GmbH 6 / 18

https://docs.liquibase.com/concepts/changelogs/preconditions.html

 //The following replaces "...where CONTACT.CONTACTID = '" + pRelationId + "'..."
 .where("CONTACT.CONTACTID", pRelationId)
 .arrayRow();

● Default columns

Every table needs the default columns USER_NEW, USER_EDIT, DATE_NEW, DATE_EDIT to see

what happened when to the dataset. Add them to all new tables and use them in your entity.

● ColumnAlias for Expressions

If you use an expression for a field within a record container, you should set a columnAlias that

you later can easier analyse your SQL.

● Functions that encapsulate only one SQL

return always the SqlBuilder object, because you can reuse the function as a subselect in

another SqlBuilder, for example. All functions such as .cell() can be used after the function call.

4. Coding style (format)

For a semi-automatic formatting of code, use the shortcut [SHIFT] + [ALT] + [F].

Always check your code afterwards, because sometimes the code is misformatted!

● Each curly bracket deserves its own line in your code, this rule applies to functions, if-

Statements, loops etc.

○ Exceptions: Registries (i.e. KeywordRegistry) and class declarations (i.e. function

PermissionUtil () {})

● If-Statements should not be written in one line and always need curly brackets

○ High consistency makes code not only easier to read but also prevents mistakes (often

occuring when not using curly brackets at all)

○ This rule does not refer to "condition ? exprIfTrue : exprIfFalse"

○ (Open to change when automatic reformatting is available)

● Make sure your indentation makes code more readable (i.e. you see immediately in which

function your code belongs) - NOTE: the automatic formatting can also make mistakes

● Operators, variables, numbers, etc. are separated by blank spaces so you are able to identify

them easily in your code

Example:

Contact.getEmployeeNames = function(pRoleId, pLength)
{
 if(pRoleId && pLength > 0)

© 2024 ADITO Software GmbH 7 / 18

 {
 //code
 }

 return employeeNames;
}

5. Spelling & Wording

5.1. Project specific

● For all new contexts, entities, database tables and libraries use a project specific prefix (i.e.

FM_Congress_entity)

● Use the prefix also for all new fields in existing entities and database tables to differ from the

default

5.2. JDito identifiers

● Each variable must be declared in a seperate row

○ This way a type can be immediately assigned aswell (i.e. let myObj = {};)

○ Defining variables inside an array in one row is still possible (i.e. var [contactId, date, user]

= coolArray;)

● Variables must be written in camelCase

● Variable names that only contain one letter should only contain temporarily needed data (i.e. in

for(let i; i < 100; i++))

● Constants are written in capital letters (i.e. const MYCONST)

● Functions and methods are written in DromedaryCase, their parameters are preceded by the

letter "p" (i.e. CustomLib.myFunction(pPossibleParameter))

As mentioned, all of the above make your code more
readable and make it easier to identify different
components

Examples:

● Object (memberObject["name"] = "Vernon Roberts";)

● Objects with a key / value-construction (countryMap["EN"] = "England";)

● Array (memberData[0] = "O1001";)

© 2024 ADITO Software GmbH 8 / 18

● String (memberName = "Klaus";)

● Numeric values (memberCount = 100;)

var tableCount = 13;
const MAX_LOOP = 5000;
var dataArray = [];

...

dataArray.forEach(function(item)
{
 CustomLib.myFunction(item, tableCount);
});

5.3. ADITO models

Real(!) English names should be given to ADITO models - they should provide a first insight into what

exactly your model will do. The name of your context should be represented in its entity, views and

providers (i.e. Contact, Contact_entity, ContactPreview_view, Contact_provider). +

● Typical structure: (ProjectPrefix_)ModelCamelCase_suffix

● Exceptions:

○ Contexts do not have suffixes

○ Entity fields: CAPITAL_LETTERS for database fields and CamelCase for all others

○ dromedaryCase is also used for: Executables and record containers

○ Database tables and colums are always written in CAPITAL_LETTERS

Model Name pattern, description Examples

Entity CamelCase_entity Activity_entity

AttributeRelation_entity

© 2024 ADITO Software GmbH 9 / 18

Model Name pattern, description Examples

Entity Field Fields holding the content of one specific

database field are spelled equally:

FIELDNAME, without underscores, except

for 3 cases:

LASTNAME

When a primary key of another table is

referenced, the suffix "ID" is preceded by

an underscore.

CONTACT_ID

Certain columns automatically generated

by the system.

DATE_EDIT

When multiple primary keys of multiple

tables are referenced, it ALWAYS have to

be named like this. The OBJECT_TYPE is

the entity that the OBJECT_ROWID is

refering to.

OBJECT_ROWID, OBJECT_TYPE

All other fields are written in CamelCase. ReturnDate

Field Group <SUMMARY>_fieldGroup FULL_NAME_fieldGroup

Aggregate

Field

<name of corresponding

EntityField>_aggregate

Organisation_entity: count_aggregate

Context CamelCase Activity

AttributeRelation

View CamelCase_view

CamelCaseFunction_view

The naming of standardized views is :

Main, Filter, Preview, Edit,

PreviewMultiple, or Lookup

PersonMain_view

PersonFilter_view

PersonEdit_view

PersonPreview_view

PersonLookup_view

Other views are named according to

their function.

PersonDetail_view

PersonEditDefaults_view

PersonSimpleList_view

© 2024 ADITO Software GmbH 10 / 18

Model Name pattern, description Examples

View

Template

CamelCase + s (if plural)

The naming of a view template should be

determined by its content.

The plural is used, if multiple datasets

can be shown at once (e.g. in a table).

Person

Persons

CamelCase + s (if plural) + View-

Templatetype

If a view template is related to different

views (in particular, inside the

CamelCaseFilter_view) then the template

type should be used as suffix.

The plural is used, if multiple datasets

can be shown at once (e.g. in a table).

PersonsTable

PersonsTreetable

PersonsTimeline

Prototypical construction of a

CamelCasePreview_view:

The view templates should be named as

shown on the right.

Additionally required view templates are

given in between.

Header + [Details] + Info +

[AdditionalInfo]

with 2: Header, Info

with 3: Header, Details, Info

with 4: Header, Details, Info,

AdditionalInfo

RecordCon

tainer

dromedaryCase Standard RecordContainers: simply

always "db", "jdito", "index", or

"dataless".

Additional RecordContainers: arbitrary

name, reflecting the purpose

Parameter CamelCase_param RowId_param

OrderAddress_param

© 2024 ADITO Software GmbH 11 / 18

Model Name pattern, description Examples

Provider CamelCase_provider Activity_provider

AttributeRelation_provider

Consumer CamelCase_consumer Activity_consumer

AttributeRelation_consumer

Dashboard CamelCase_dashboard Sales_dashboard

Dashlet

config

CamelCase AllContacts

Dashlet <DashletConfigName>_dashlet AllContacts_dashlet

Action CamelCase_action NewActivity_action

OpenEditDefaultsView_action

FilterExten

sion

CamelCase_filter Favorites_filter

FilterExten

sionSet

CamelCase_filter Attribute_filter

Library CamelCase_lib Keyword_lib

ActivityTask_lib

Executable Project_dromedaryCase_serverProcess

dromedaryCase_serverProcess

dromedaryCase_rest

dromedaryCase_workflowService

usw.

DreSo_updateClassification_serverProce

ss

buildSerialLetter_serverProcess

workflowRoles_rest

createSalesproject_workflowService

usw.

© 2024 ADITO Software GmbH 12 / 18

Model Name pattern, description Examples

Database

table

TABLENAME, without underscores,

except for 2 cases:

OFFER

OFFERITEM

Essential tables have 'AB_' (for ADITO

basic) as a prefix.

AB_OBJECTRELATION

System tables have 'ASYS_' (stands for

ADITO system) as a prefix.

ASYS_USERS

Database

column

COLUMNAME, without underscores,

except for 2 cases:

LASTNAME

When a primary key of another table is

being referenced, the suffix "ID" is

preceded by an underscore.

CONTACT_ID

Specific columns automatically generated

by the system.

DATE_EDIT

5.4. Module-specific terms

When developing your modules, please keep strictly to the respective spelling conventions. Some of

these conventions exist only for orientation purposes, while others are bindingly required, as

modularization mechanisms rely on them (Example: language files).

Here is a list of the most important spelling conventions:

● Modules in Git:

○ only lowercase letters (e.g. "salutation")

○ on demand, use hyphen (e.g. "csv-importer"), but no other special characters, like

underscore etc.

○ ideally, add an icon and a suitable description, as, e.g., done in the Git subgroup "xRM-

Platform"

● ExtensionPoints: "<model name>ExtensionPoint", e.g., "FieldExtensionPoint",

"ActionFieldExtensionPoint". [One-sided ExtensionPoints] can be named genericly, e.g.,

OpportunityExtensionPoint

© 2024 ADITO Software GmbH 13 / 18

https://gitlab.adito.de/xrm-modules/xrm-platform
https://gitlab.adito.de/xrm-modules/xrm-platform

● implementations of ExtensionPoints: Naming according to the spelling guidelines in AID001

Coding Styles, e.g., MYFIELD (upper case) for database-related EntityFields, or MyField

(CamelCase) for calculated fields

● language files: The naming follows the syntax "<root file name>_<module name>" (e.g.,

"_____LANGUAGE_de_activity") and is automatically applied, when you create a new language

file via option "New" from the context menu of folder "language". Do not change the

autogenerated names, as they are technically required, in order to merge the several module-

specific language files into one single file, when transpiling.

● services:

○ global services: "<module name><ServiceName>_service", e.g.,

"attributeUsageContexts_service"

○ Entity services: "<module name><ProcessName>_service", e.g.

"activityOnDBDelete_service"

● service implementations: Although in the xRM modules, the pattern "<moduleName>_impl"

(e.g., "task_impl") is frequently used, a more expressive naming is recommended, e.g.,

addNewActivity_impl. Temporary implementations are named "tmp_impl".

● modifications: Do not change the autogenerated names.

● keyword registries: <ModuleName>Keywords_registry, e.g., ActivityKeywords_registry or

ContactManagementKeywords_registry.

5.5. Liquibase

Each liquibase file name should contain an action prefix, the tablename and what is added, changed,

deleted etc.. See examples in the table below.

For your project create your own liquibase folder and sub-folders for each version, i.e., "sprint_1". In

each sub-folder you should create a changelog.xml and two sub-folders to separate database structure

("struct") and database content ("data"). Now you can store all xml files in these folders.

● Always use DATETIME instead of TIMESTAMP due to the 2038-Problem

● Boolean values have to be stored in TINYINT

Operating content Prefix Example

creating a table create_ create_address.xml

© 2024 ADITO Software GmbH 14 / 18

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID001_Coding_Styles.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID001_Coding_Styles.pdf
https://en.wikipedia.org/wiki/Year_2038_problem

Operating content Prefix Example

inserting new content

(keywords, demo data, etc.)

insert_ insert_keyword_offerstatus.xml

adding columns add_ add_checklist_position.xml

change structure (table,

column, constraint, etc.)

alter_ alter_contact_status.xml

updating content (data sets) update_ update_keyword_medium.xml

deleting content delete_ delete_attribute_newsletter.xml

removing structure (including

constraints etc.)

remove_ remove_address_contact_nullConstraint.xml

6. Documentation and Comments

6.1. Comments

 Unnecessary parts of the comments have to be removed before committing!

BUT not every comment has to be deleted! You do not have to delete comment that describe why is

was done that way. It does NOT mean that you have to write what is happening, just why you did this.

This helps to debug the code later on, especially if a coworker has to deal with it!

DON’T:

var resultArray = [];

userProfilesFull.forEach(function(pItem)

{

 // logging.show(vars.getString("$global.firstLastName"));

 if (vars.get("$global.firstLastName"))

 {

 // logging.show("in loop");

 userProfile = userMap[text.decodeMS(pItem)[1].split(":")[1]][tools.PARAMS];

 resultArray.push([pItem, userProfile[tools.LASTNAME] + " " + userProfile[tools.FIRSTNAME]]);

 // logging.log(i);

 }

 else

© 2024 ADITO Software GmbH 15 / 18

 {

 resultArray.push([pUsersName[i], pUserTitle[i]]);

 }

});

DO (practical comment):

 //SqlBuilder not implemented as the statement needs to be finished in the switch case
 switch (pComparison)
 {
 case "EQUAL":
 case "NOT_EQUAL":
 resultSqlCond = resultSqlCond + " '" + pRawvalue + "')";
 ...
 }

It is useful to think: "Will I know why I did that in a month?" and "Will somebody

else understand what I was doing here?".

6.2. Documentation of Functions/Methods

● We refer to JSDoc to comment our Functions

● All functions must be documented

● A function documentation has to have at least:

○ A short description

○ All parameters described

○ The return value described (if existend)

Example:

/**

 * makes a SqlBuilder that checks if there's (not) a commrestriction for a contact

 *

 * @param {String} pMedium medium to check if undefined, do not check it

 * @param {boolean} pNoRestriction if true, the condition gets every contact that has no commrestriction, otherwise every contact that

has a commrestriction

 * @param {String|Number} [pStartDate=currentDate] date to check against the start date of the commrestriction

 * @param {object} [pEntityInfo] an object with two properties:

 *

 * entityFields: array of entity fields

 * entityIdField: the id field name as string

 *

 *

 * @return {SqlBuilder} the condition

 */

Possible parameter types: (see also JSDoc param tag & JSDoc types)

© 2024 ADITO Software GmbH 16 / 18

https://jsdoc.app/
https://jsdoc.app/tags-param.html
https://jsdoc.app/tags-type.html

Type Example Description

String {String} A simple string has to be entered.

Boolean {boolean} True or False have to be entered.

Number {Number} Simple number

Object {Object} If you use an object as a parameter it is necessary that you

have listed every possible value that is needed to fulfill the

logic of your code. An example is shown above.

Array {Array} A one dimensional array like ["1", "2"]. If it has a specific

type other than string (string is standard), you can include

a type in [] like {Array[boolean]}.

Multi-

diminesional

Array

{Array[][]} As with a one dimensional array you can enter specific

types to each array you use e.g. {Array[boolean][Number]}

Special Types {SqlBuilder} If your parameter includes a special object that is build

beforehand by a seperate function you can use their object

name.

Optional

parameter

{String} [pParam] This parameter is optional for the function.

Optional

parameter with

default

{String}

[pParam=default]

This parameter is optional and has a default value when

not declared.

© 2024 ADITO Software GmbH 17 / 18

6.3. Documentation Property

Not only is it necessary to comment your code but to also have a documentation about a field, param,

action, library or even an entire entity to describe what it does. You can use the documenation

property in order to manifest your logic. The content of the documenation is written in AsciiDoc (.adoc)

files. You may have to install the AsciiDoctorJ-plugin in your ADITO designer.

You have to write a documentation if the logic behind it is not 100% self

explanatory!

7. Reserved (Key-)Words

On http://www.reservedwordsearch.com/ you can enter names to be checked automatically (no

guarantee for completeness!).

Other reserved words lists:

● JavaScript

● Java

● General SQL

● MariaDB

● MSSQL

● MySQL

● Oracle

© 2024 ADITO Software GmbH 18 / 18

https://neon.adito.de/client/KnowledgeManagement/full?id=d4993bbb-660e-4b91-9d7d-ac3e5b306f04
http://www.reservedwordsearch.com/
https://www.w3schools.com/js/js_reserved.asp
https://www.w3schools.com/java/java_ref_keywords.asp
https://docs.actian.com/psql/psqlv13/index.html#page/sqlref/sqlkword.htm
https://mariadb.com/kb/en/reserved-words/
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/reserved-keywords-transact-sql?view=sql-server-ver15
https://dev.mysql.com/doc/refman/8.0/en/keywords.html#keywords-8-0-detailed-N
https://docs.oracle.com/database/121/SQLRF/ap_keywd001.htm#SQLRF55621

	Coding Guidelines in ADITO - Long Version : AID001
	Character Formatting
	Index
	1. Purpose
	2. General rules
	3. Coding (technical)
	3.1. General
	3.2. Liquibase
	3.2.1. Structure
	3.2.2. Location
	3.2.3. Spelling
	3.2.4. Error Handling / Prevention

	3.3. SQL

	4. Coding style (format)
	5. Spelling & Wording
	5.1. Project specific
	5.2. JDito identifiers
	5.3. ADITO models
	5.4. Module-specific terms
	5.5. Liquibase

	6. Documentation and Comments
	6.1. Comments
	6.2. Documentation of Functions/Methods
	6.3. Documentation Property

	7. Reserved (Key-)Words

