
Release Management
AID 107

ADITO Academy

Version 1.3 | 21.03.2022



Index

1. Purpose of this document ___________________________________________________________ 3

2. Terminology ______________________________________________________________________ 4

3. Overview_________________________________________________________________________ 5

4. Branching and associated proceedings _________________________________________________ 6

4.1. [MAINTAINER] Deriving the "dev" branch ______________________________________________ 7

4.2. [DEVELOPER] Deriving Working branches and Hotfix branches _____________________________ 8

4.3. [DEVELOPER] Daily Merge und creating Merge Requests __________________________________ 8

4.3.1. Minimize conflicts when merging__________________________________________________ 12

4.4. [MAINTAINER] Handling Merge Requests _____________________________________________ 13

4.5. [MAINTAINER] Weekly Merge and Release ____________________________________________ 15

5. Additional tools __________________________________________________________________ 16

5.1. Naming convention ______________________________________________________________ 16

5.2. Expandability of the branching model________________________________________________ 16

5.3. Dailies_________________________________________________________________________ 16

5.4. Housekeeping in the ADITO Designer ________________________________________________ 16

5.5. Customer’s Developments_________________________________________________________ 16

5.6. Tagging & Deployment ___________________________________________________________ 17

6. Role QA in release management _____________________________________________________ 17

© 2022 ADITO Software GmbH 1 / 17



This document is subject to copyright protection. Therefore all contents may only be used, saved or

duplicated for designated purposes such as for ADITO workshops or ADITO projects. It is mandatory to

consult ADITO first before changing, publishing or passing on contents to a third party, as well as any

other possible purposes.

Version Changes

1.3 Renormalize Newlines

1.2 Typo fix

1.1 QA Additions

1.0 Release version

© 2022 ADITO Software GmbH 2 / 17



1. Purpose of this document

This document describes ADITO’s release management process. In addition to the strictly defined

branching model, this process also includes the execution of code reviews based on merge requests.

The goal of the release management process is to increase code quality.

This document explains the tasks that the roles "Maintainer" and "Developer" are assigned to during

the process. Further information on the Git guidelines and the use of Git in the ADITO Designer can be

found in document AID 089. To understand this document fully, good knowledge about AID 089 is

required.

© 2022 ADITO Software GmbH 3 / 17



2. Terminology

● Developer:

edits tickets on specifically created branches.

● Maintainer:

is responsible for maintenance and management of the Git repositories. He provides particular

branches for the corresponding ADITO systems.

● Branch:

is a fork of a project for independent development.

● Source branch:

is in subject to a merge request always the branch, from which the code is being transferred.

● Target branch:

is in subject to a merge request always the branch, in which the code is being transferred.

● Child branch:

is a branch, which is derived from another branch.

● Parent branch:

is a branch, from which a child branch was derived.

● Master branch:

is the main branch of a Git repository - it includes the code, which is provided on the productive

system.

● Hotfix branch:

is being derived from the master branch in case of an error in order to fix it.

● Protected Branch:

is a branch, which code stand can only be altered with a merge request. Classic push commands

are not allowed.

● Daily Merge:

includes the guide to daily merge the parent branch into the child branch

© 2022 ADITO Software GmbH 4 / 17



3. Overview

The following figure gives you an overview of the release management process.

Figure 1. The release management process

© 2022 ADITO Software GmbH 5 / 17



4. Branching and associated proceedings

In the following, the branches and procedures shown in Figure 2, which are necessary for successful

quality improvement through a structured release management process, are explained.

Figure 2. Branches of the Git repository

© 2022 ADITO Software GmbH 6 / 17



4.1. [MAINTAINER] Deriving the "dev" branch

After the Git repository was created, the Maintainer is responsible for making sure a development

branch is being created. For that he derived the "dev" branch from the master branch. Both branches

are protected.

Figure 3. Creation of the dev branch

To the productive ADITO system the master branch is being deployed, to the test system the dev branch

is being deployed.

Practical example:

After the dev branch was created, it must be marked as protected in the Git repository of the

respective project via Settings > Repository > Protected Branches (see Figure 4). Those settings must be

checked or set for the master branch as well.

Figure 4. "Protected" branch

© 2022 ADITO Software GmbH 7 / 17



4.2. [DEVELOPER] Deriving Working branches and Hotfix branches

The Developer creates a new Working branch for each work package (User-Story, Epic, ect.) within

reason.

In those cases the parent branch of every Working branch is the dev branch.

The Developer furthermore creates a DB-changes file for each Working branch in a folder (e.g., Sprint 1

or Release 2.0), in which the database changes of every Working branch are documented.

Figure 5. Creation of the Wokring branches incl. DB-changes files

For the handling of errors in the productive ADITO system, the Developer creates a new branch as well:

a so-called Hotfix branch. They are based on the master branch.

Figure 6. Hotfix branch

4.3. [DEVELOPER] Daily Merge und creating Merge Requests

After the developer has created his working or hotfix branch, he is required to merge the

corresponding parent branch into his branch daily to keep it up to date.

© 2022 ADITO Software GmbH 8 / 17



Figure 7. Daily Merge & Merge Requests

Now, when the developer has completed a user story, an epic, or a hotfix and has reached the end of

that work package, he creates a merge request to insert the by him completed and successfully tested

code into the parent branch.

When creating a merge request the developer has to ensure the following:

● The work package is completed 100%

● All tests were successfull

● Source and target branch are selected correctly

● Mark for deleting the source branch after accepted merge request is set

Practical example:

The developer performs the daily merge by pulling the parent branch (e.g. dev) into the corresponding

child branch (e.g. dev_implementation_bs).

After the developer has committed and pushed the last changes in his branch, he creates a Merge

Request on GitLab (see Figure 8 and following).

© 2022 ADITO Software GmbH 9 / 17



Figure 8. Create Merge Request (1)

At first the respective source and target branch need to be selected.

Figure 9. Create Merge Request (2)

As an alternative Gitlab gives the Developer the choice, to create a merge request for his last push.

Figure 10. Create Merge Request (3)

Both the button "Compare branches and continue" from Figure 9 and the button "Create merge

request" from Figure 10, take the creator to the overview page where he can see a summary of the

merge request (see Figure 11).

Here a title can be assigned, a description can be maintained and/or a person responsible for the

© 2022 ADITO Software GmbH 10 / 17



merge request can be selected. With click on "Submit merge request" the creator releases the merge

request for processing and thus assures the following points:

● The work package is completed 100%

● All tests were successfull

● Source and target branch are selected correctly

● Mark for deleting the source branch after accepted merge request is set

Figure 11. Create Merge Request (4)

Within or after creation of a merge request, it’s always possible that errors accur and the merge

request can therefore no longer be executed by the Maintainer (see Figure 12).

If that’s the case, the Developer is requested to merge the target/parent branch into his source branch,

to fix the conflicts locally. After that he needs to update the merge request with a commit and push

command.

© 2022 ADITO Software GmbH 11 / 17



Figure 12. Conflicts in a Merge Request

4.3.1. Minimize conflicts when merging

It is recommended to first raise the two branches to the same version before initiating the merge. This

results in you not having to worry about the version number changes of the entities/contexts/views

etc.

You should also use the feature "Renormalize Newlines" on both the Master Branch and Working

Branch. If anything did change with the execution of this feature you have to make a commit again.

© 2022 ADITO Software GmbH 12 / 17



4.4. [MAINTAINER] Handling Merge Requests

If a developer’s merge request is free of conflicts, the Maintainer can process it. The Maintainer must

observe the code review rules (see practical example). If a code passes the review, it is merged into the

specified target branch.

Figure 13. Handling Merge Requests

The Maintainer needs to make sure that the source branch is being deleted after a successful merge.

Deleting working and hotfix branches in a Git repository is essential to maintain clarity.

© 2022 ADITO Software GmbH 13 / 17



Practical example

Figure 14. Detail page of a merge requests

The tab Merge Requests contains all merge requests of a project. After selecting a merge request, the

detailed view appears (see Figure 14). The Maintainer must now check the following points

1. Has the correct target branch been selected? (that’s only possible with correct usage of the

naming conventions of section 5.1.)

2. Has the tick for deleting the source branch been selected?

3. Complies the code with the requested quality?

○ Does it meet the Coding-Guidelines?

○ Can the checklist "Code-Review" in ADITO internally be processed without gaps?


With a merge request, only the entire request can be accepted or rejected. A partial

acceptance is not possible.

© 2022 ADITO Software GmbH 14 / 17



[ACCEPTED] If all requirements have been met, the merge request can be accepted.

- > By clicking on the "Merge" button, the new code is now available on the target branch and the

source branch is deleted from the repository.

[REJECTED] If the Maintainer finds quality issues in the code, he uses the comment function to inform

the Developer about the found issues. The Developer then improves the requested parts of the code.

After that he commits and pushes the changes to the source branch of the merge request, which

automatically updates the merge request.

4.5. [MAINTAINER] Weekly Merge and Release

In order to ensure that changes on the parent branches are also applied to the child branches, the

Maintainer is required to merge the parent branch into the child branch at least once a week when

changes are made. In the opposite direction, the Maintainer is responsible for transferring the code

from the child to the parent branch in the process of a release.

If the master branch is updated in the latter case, a new tag must be specified (see chapter Tagging &

Deployment).

Figure 15. Weekly Merge & Release

Practical example:

Since the dev branch is protected, the Maintainer executes the weekly merge analog to section 4.3. He

submits the merge request (source branch: master; target branch: dev) which he then also merges by

himself. The other way round it’s the same: He submits a merge request (source branch: dev; target

branch: master) and merges by himself.

© 2022 ADITO Software GmbH 15 / 17



5. Additional tools

In addition to the branching model the release management process includes other important tools,

which contribute to quality improvement.

5.1. Naming convention

The naming convention for Working and Hotfix branches needs to have the following structure:

„Parent branch“ _ „theme“ _ „Employee Initials“

Example for Hotfix branch: master_hotfix_performanceOrg_bs

Example for Working branch: dev_sapImport_bs

5.2. Expandability of the branching model

In some cases it can be necessary to expand the branching model. Here’s an example for general

clarification:

In a project a partial project was commissioned, which had to go live before the official Go-Live date. In

that case the branching model had to be modified: A second development branch was needed. Now a

separate development state was ensured, that could go live on a different date.

5.3. Dailies

A daily is a 15 minutes long, daily meeting in which Developers discuss their daily tasks in the release

management process, among other things.

For agile projects, where dailies take place anyway, an extra daily for the points concerning the release

management process is not needed. They can be included in the "main" daily.

5.4. Housekeeping in the ADITO Designer

By deleting the branches after an accepted Merge Request, the clarity in the "origin" repository is

guaranteed.

To prevent the Git repository of the respective Developer from ending up in chaos, the Developer can

use a Fetch command to remove "remote" branches that no longer exist. Branches of the Developer’s

"local" repository are removed via RMB → "delete Branch" (see AID 089 section 3.5).

5.5. Customer’s Developments

In case a customer’s Developer develops code in a project within the implementation phase, their code

needs to be subjected to the release management process as well.

The customer must pay for the resulting expenses. Such a service can be stated as quality assurance.

© 2022 ADITO Software GmbH 16 / 17



After the implementation phase, responsibility for the code’s quality is transferred to the customer’s

developer team.

5.6. Tagging & Deployment

A tag must be specified for every accepted merge request that changes the code state of the master

branch. The following tagging model is for guidance only.

If a development branch was merged in the master, the first two digits of the tag would be changed. If a

hotfix branch was merged successfully, the last digit would be raised.

In addition to tagging, the code states of course also need to be deployed. The release management

process intends the deployment as follows:

● Master branch exclusively on Prod system

● Dev branch on systems like "Test" or "Training"

6. Role QA in release management

A QA-Engineer (Quality Assurance Engineer) has to view merge requests and see if code reviews are

executed in ordinary method. The code review is a part of the complete QA-Process and has to be

viewed and secured by the QA-Engineer. Normally code reviews will be held by the teams developers.

If the maintainer finds weak spots due to insufficient quality of the code, the QA-Engineer can,

depending on the topic, call a meeting to clarify the issues.

© 2022 ADITO Software GmbH 17 / 17


	Release Management : AID 107
	Index
	1. Purpose of this document
	2. Terminology
	3. Overview
	4. Branching and associated proceedings
	4.1. [MAINTAINER] Deriving the "dev" branch
	4.2. [DEVELOPER] Deriving Working branches and Hotfix branches
	4.3. [DEVELOPER] Daily Merge und creating Merge Requests
	4.3.1. Minimize conflicts when merging

	4.4. [MAINTAINER] Handling Merge Requests
	4.5. [MAINTAINER] Weekly Merge and Release

	5. Additional tools
	5.1. Naming convention
	5.2. Expandability of the branching model
	5.3. Dailies
	5.4. Housekeeping in the ADITO Designer
	5.5. Customer’s Developments
	5.6. Tagging & Deployment

	6. Role QA in release management

